Line bundles on rigid spaces in the<i>v</i>-topology

نویسندگان

چکیده

Abstract For a smooth rigid space X over perfectoid field extension K of $\mathbb {Q}_p$ , we investigate how the v -Picard group associated diamond $X^{\diamondsuit }$ differs from analytic Picard . To this end, construct left-exact ‘Hodge–Tate logarithm’ sequence $$\begin{align*}0\to \operatorname{Pic}_{\mathrm{an}}(X)\to \operatorname{Pic}_v(X^{\diamondsuit})\to H^0(X,\Omega_X^1)\{-1\}. \end{align*}$$ We deduce some analyticity criteria which have applications to p -adic modular forms. algebraically closed show that is also right-exact if proper or one-dimensional. In contrast, that, for affine {A}^n$ image Hodge–Tate logarithm consists precisely differentials. It follows up splitting, -line bundles may be interpreted as Higgs bundles. use Simpson correspondence rank one.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Line Bundles on Projective Spaces Preliminary Draft

0.1. Notations and Conventions. During this note, we will fix a base field k (e.g. the complex numbers C). The multiplicative group of the field k will be denoted by Gm. All the vector spaces considered will be finite dimensional vector spaces over the field k. For a given vector space V of dimension≥ 1, we will denote the dual vector space, the projective space parameterizing 1-dimensional sub...

متن کامل

Balanced Line Bundles and Equivariant Compactifications of Homogeneous Spaces

Manin’s conjecture predicts an asymptotic formula for the number of rational points of bounded height on a smooth projective variety X in terms of global geometric invariants of X. The strongest form of the conjecture implies certain inequalities among geometric invariants of X and of its subvarieties. We provide a general geometric framework explaining these phenomena, via the notion of balanc...

متن کامل

Ramadanov Conjecture and Line Bundles over Compact Hermitian Symmetric Spaces

We compute the Szegö kernels of the unit circle bundles of homogeneous negative line bundles over a compact Hermitian symmetric space. We prove that their logarithmic terms vanish in all cases and, further, that the circle bundles are not diffeomorphic to the unit sphere in Cn for Grassmannian manifolds of higher ranks. In particular they provide an infinite family of smoothly bounded strictly ...

متن کامل

Paley-wiener Theorem for Line Bundles over Compact Symmetric Spaces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Line bundles on quantum spheres

The (left coalgebra) line bundle associated to the quantum Hopf fibration of any quantum two-sphere is shown to be a finitely generated projective module. The corresponding projector is constructed and its monopole charge is computed. It is shown that the Dirac q-monopole connection on any quantum two-sphere induces the Grassmannian connection built with this projector.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum of Mathematics, Sigma

سال: 2022

ISSN: ['2050-5094']

DOI: https://doi.org/10.1017/fms.2022.72